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Some perturbation solutions in laminar 
boundary-layer theory 

Part 1. The momentum equation 

By PAUL A. LIBBY AND HERBERT FOX 
Polytechnic Institute of Brooklyn, Brooklyn, New York 

(Received 13 May 1963) 

The velocity fields associated with a variety of flows which may be described by 
perturbations of the Blasius solution are considered. These are flows which, for 
example, because of localized mass transfer, involve the initial-value problem 
of boundary-layer theory, or which involve a variable ratio of the viscosity- 
density product, or finally which involvemass transfer. The perturbation solutions 
are presented so that in accord with the usual linearization procedures further 
applications for the determination of first-order effects can be readily made. I n  
addition, each of these perturbations involves a common differential operator 
whose eigenfunctions form a complete or-thogonal set. Accordingly, a procedure 
for systematically improving each perturbation solution to obtain higher-order 
effects by quadrature is presented. The results of applications in several cases are 
given and are compared to more accurate solutions where available. 

~ ___ ~ _ _ _ _  

1. Introduction 
Despite the extensive advances in laminar boundary-layer theory there remain 

many problems which are only solvable either by numerical solution of the exact 
equations or by approximate methods, e.g. by the KBrmBn-Pohlhausen method. 
The former, which are identified currently with Flugge-Lotz & Baxter (1956, 
1957), Kramer & Lieberstein (1959), Howe(1959),andSmith &Clutter (1961),will 
become increasingly more commonplace and will be applied to more complex 
problems. Similar comment applies to the Pallone-Dorodnitzn method (1961) 
which involves application of a strip method of solution. At the other limit of the 
accuracy-complexity spectrum are conventional integral methods which provide 
ready answers to many problems but which have well-known limitations with 
respect to detailed information and effects. 

An approximation technique is presented here which is based on linearization 
about the Blasius solution and which provides simple and in principle exact 
solutions to some problems not tractable by conventional integral methods. I n  
addition, it may be useful in conjunction with numerical solutions in regions 
where the Blasius solution is being approached asymptotically. Since it is based 
on linearization, it permits first-order effects of several co-existing perturbations 
to be readily established. I n  addition, because of the nature of the solutions 
obtained, systematic consideration of higher-order effects by quadrature is 
possible. 
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Expansion and perturbation techniques have been employed extensively in 
boundary-layer theory in the past. Schlicting (1955) and Hayes & Probstein 
(1959) provide ready reference thereto. The work of Glauert (1956), of Bloom & 
Steiger (1961), and of Ferri (1560) is closely related to the present study in so far 
as first-order effects are concerned. 

In  the following section the perturbation solutions for three types of velocity 
disturbances are obtained; these pertain to disturbances arising from the initial 
profile, from a variable ratio of the product of density and viscosity, and from the 
wall boundary condition. The solution corresponding to the first type of distur- 
bance is shown to be given in terms of eigenfunctions which form a complete, 
orthogonal set and which relate to a differential operator common to all pertur- 
bations about the Blasius solution. Consequently, it  is possible to obtain 
systematically higher-order solutions for each type of disturbance. In  a subse- 
quent section several applications are given along with comparisons to more 
accurate calculations where available. 

2. Analysis 
The momentum equation for a laminar boundary layer with a uniform external 

stream can be written in terms of the Levy-Lees variables 7 and s" as [cf. Lees 
(1956) and Hayes & Probstein (1959)] 

(Cf,,), +#q7 = 2"f,fs, -f,d% (2.1) 

where 7 = Peueri(23)-+ 10 (P/Pe) dy,  

g = IOX pe ,ue ue r2f dx. 

Coiisider Gow a series of flows which are close to those described by the Blasius 

12.2) 
solutioa , namely by 

subject to the boundary conditions 

f:+fof; = 0, 

f O ( O )  = f h ( O )  = 0; f h ( c o )  = 1.  

Such a flow, for example, would be described as follows. Let 

f,(K 71) N fh(7) +fl, 17(s", 7) +fl, 2@> 71) + . . . > (2.3) 

subject to the conditions 

where Fo(7) is compatible with (2.3) and where f l ,  z+l Q fl, i. Thus, an initial profile 
deviating slightly from a Blasius profile is being considered. 

The equation for fl, is obtained by linearizing (2.1) about f o  and is 

fl, l,q?) + f o  fl, 1,'j +fX, 1 - W f ;  fl, 15.v -f{f1, l a )  = 0, ( 2 . 5 )  
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subject to the conditions 

f i , l (S" ,O)  =f,,1,(S",O) = 0, fl,f1,(~,4 = 0, 
and 

Separation of variables so that f,, l(S", 7) = Nl(7) #,(S") yields 

fi, I,(% 7) = Po(7) -far) = porn. 

8, N g-Bh, (2.6) 

(2.7) and Nf + f o  N ;  + A 1 f ;  N ;  + (1 - A1)f;  N1 = 0. 

The conditions on Nl are homogeneous: i.e. N,(O) = Ni(00) = 0;  thus a typical 
eigenvalue problem arises. With no loss in generality N ' ; ( O )  can be set equal to 
unity so that with a value of A, selected, a numerical integration of (2.7) pro- 
ceeding from 7 = 0 can be carried out. 

The asymptotic approximation for N ;  valid as 7 + co, 1 1 - A,] (7 - k)-2 < 1, is 
shown in the Appendix to be 

Inspection of (2.8) indicates that N ;  + 0 as 7 + 00 for all positive A,; thus, a 
continuous spectrum of eigenvalues exists and numerical integration from 7 = 0 
will result in N;(oo) = 0 for any positive A,. However, if N ;  is required to exhibit 
exponential decay as 7 -+ 00, i.e. if u2 = 0, then only discrete values of A, are 
acceptable. This requirement is employed herein along with a numerical pro- 
cedure to determine the eigenvalues and related eigenfunctions. The details of 
the calculations are given in the Appendix. 

Several comments on exponential behaviour of N ;  may be of interest. The 
asymptotic solution for (2.7) is closely related to the asymptotic solution of the 
momentum equation for similar flows considered by Cohen & Reshotko (1956). 
Indeed, their pressure gradient or similarity parameter /3 is equal to - +Al; for 
/3 < 0 they point out that non-unique solutions prevail unless exponential decay 
with 7 -+ 00 is required. In  order to remove the non-uniqueness, they were able 
to invoke the physical argument valid for /3 > - $, i.e. for A, < 1, namely that the 
displacement thickness becomes infinite unless u2 = 0. Since separation occurs 
for values of /3 satisfying this inequality in the cases they considered, this argu- 
ment provides uniqueness therein but is inapplicable for A, > 1. Similar considera- 
tions regarding the proper behaviour of solutions to the boundary-layer equations 
as 7 + 00 have been made by Goldstein (1956), Imai (1957) and Stewartson (1957); 
all argue that only exponential decay into the external potential flow is acceptable. 
Apparently these arguments are subject to considerable discussion. However, it 
is noted that the asymptotic behaviour of interest herein concerns a perturbation 
about a Blasius function which decays exponentially to unity; thus, in this case 
an exponential decay for the perturbations is required. Finally, note that the 
disturbing function Po(7) is restricted by these considerations to exponential 
decay as 7 --f co. 

The solution for f ,  is thus given by 
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where the constants Ai, are determined by the condition 
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m 

'O(7) 'v c Al, k Nl, k ( y ) *  (2.10) 
k = l  

It is of interest now to consider some properties of the Nl,k functions; (2.7) can 
be reduced to a second-order linear equation of standard form by the substitutions 
Nl, k = cl, k(?) f  Hl, k = Ci, k; then 

[ ( f  ;'/f,) Hi, kl' + [('l, k fh4/f:) - f o  fh21 Hl, k = (2.11) 

which is an equation in Sturm-Liouville form. Now in the usual fashion consider 
two values of the index k, say m and n, and the two corresponding equations 
implied by (2.11). Then cross-multiplication by Hl,k dy,  integration from 0 to co 
and subtraction yields 

( f h 4 / ~ )  ~ 1 ,  nz ~ 1 ,  7L clv = cn am,, (2.12) 

provided the H,,k functions decay exponentially as 7 + co a t  least as fast as 
exp [ - (y - ~ ) ~ / 4 ] .  In  terms of the Nl,k functions, (2.12) implies that 

Jorn ( f  h 4 K )  (4, ,n/Y;)' (4, dfhf'd7 = c7L Sm,, (2.13) 

which indicates that the Nl,lc functions are orthogonal in the sense of (2.13) and 
that the Al, k constants may be determined according to the equation 

(2.14) 

An additional property of the Nl, eigenfunctions may be obtained from (2.11); 
multiplication by H,,,dy, integration from 0 to co, and integration by parts 
lead to 

r m  rm 

Since f o ,  f and f ,  are everywhere positive, (2.15) implies that A, > 0 and thus 
that the numerical procedures employed for the determination of Al, would be 
unsuccessful if negative values of A,, were sought. Similar considerations 
involving the complex conjugate of Hl, show that Al, must be real. 

These properties of the N,,k functions imply that they form a complete, 
orthogonal set with respect to functions having exponential decay a t  infinity; 
it  is, therefore, possible to improve systematically the solution of the initial 
value problem under discussion, i.e. to obtainf,, 2(s", y),f,, '(5,  y), etc. This may be 
seen as follows: If the approximation attendant on fl,i+l << f , ,< is considered, 
then (2.1) with C _= 1 yields for fl, *, i > 1, the equation 

(2.16) 

where Hi = H,(S,g) is a given function of the previously obtained functions, 
f,, i-l(s", y), etc. With the boundary and initial conditions on f o  and f,, , selected 
as above, the corresponding conditions on f l . i , i  > 1 are homogeneous. The 

fi, iTq9 + f o  fi, ivv +f;fl,<- 2s"(f h fi, -f6'fi, is) = Hi, 
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requisite solution of (2.16) can be found in terms of a Green’s function G(S, 7, Boo, 70) 
defined by 

G,,, + f o  G,, +f: G - 2 a ( f ;  4, - f l  G,) = S(7 - 70) S(i7-80). (2.17) 

Now represent G as 

(2.18) 

(2.19) 

(2.20) 

Thus the Dk coefficients with v0 as a parameter are known. Substitution of (2.18) 
and (2.19) into (2.17), collection of terms in Ic, and consideration of the equation 
satisfied by X1, ,, namely (2 .7) ,  lead to 

(2.21) 
dG 
dB 

2 S 2 + h 1 , , 2 G k  = -DkS(B-Bo). 

For gi < $ < 8,’ take Gk = 0; the appropriate solution of (2.21) for Bi < 8, < B is 

GJG(E, go, y o )  = - (D1;/2B0) (S/SO)-*Al>k.  (2.22) 

The solution for fl, i(B, y), i > 1, satisfying the initial and boundary conditions is 
Thus (2.18), (2.20) and (2.22) define the appropriate Green’s function. 

(2.23) 

Thus the higher approximations to the solutions of the initial-value problem can 
be obtained by quadrature. Generally, a specific quantity such as skin-friction is 
of interest to that only fl,i,,(S,O) must be computed; then from (2.18) with 

The solution given by (2.23) is generally applicable to obtaining higher-order 
approximations for solutions which represent perturbations about the Blasius 
solution wherein the boundary and initial conditions are satisfied by the com- 
bination of the Blasius and the first-order solution. 

The first ten eigenvalues and related eigenfunctions are given in figure 1. t It is 
of interest to note that, to the accuracy available with the computer, the lowest 
eigenvalue was obtained numerically as 2. In accord with the present findings, 
Stewartson (1957) showed that one value of A, ‘and probably the lowest is 2 and 
that it is unlikely that any of the others are even integers ’. 

The values of the normalizing factor C, are given in table 1. 

t A tabulation of eigenfunctions is presented in PIBAL Report no. 752, dated August 
1962 and i,n an Addendum thereto dated March 1963. In  the evaluation of A,, for a general 
function B’,, it is convenient to have the function K,, G (fA4gt) ( N ,  B/fi)’ tabulated for 
equal increments in 7; this has been done in the aforementioned Addendum. 
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As a concluding remark concerning the above analysis, it  is perhaps worth 
noting that in an application to a particular problem three approximations arise. 
The first pertains to the representation of the initial profile with a finite number 
of eigenfunctions; the second approximation is related to the first and pertains 
to the representation of the Green's function by a finite number of eigenfunctions. 
The final approximation pertains to the truncation of the expansion of the solution 
for f N f o  + f,, +. _:. . after a certain number of terms. The degree of approximation 
attendant with representation of the initial profile is easily assessed by simple 
comparison of successive values of the coefficients A,, k; however, evaluation of 

k hlk C k  k A,, c, 
1 2.000 2.2672 6 11-3 0.382 
2 3.774 1.1447 7 13.2 0.345 
3 5.635 0.7813 8 15-1 0-338 
4 7.600 0.5065 9 16.9 0.311 
5 9.480 0.3095 10 18.7 0.332 

TABLE 1 

the approximation relative to the Green's function requires recomputation of the 
solution given by (2.23) with additional eigenfunctions in (2.18) and (2.19). 
A similar consideration applies to the overall accuracy with respect to the 
expansion off. It is noted that in some attempted applications of the present 
analysis it was found that the first ten eigenfunctions did not provide a satis- 
factory representation of the initial profile so that calculations of even first-order 
effects in these cases could not be carried out. 

Consider a second perturbation problem which arises when the product of 
density and viscosity coefficient varies slightly from unity as, for example, from 
chemical reaction or from a variable wall temperature. Suppose, for example, 

C N (h/h,)n (n < 1). (2.25) 
that 

Then C 2: l+nln(h/h,)+ ... 
1: 1 +nC,+..., 

where, in general, C, = C,(s",r). Suppose further that C, is such that for an 
arbitrarily small but finite range of s", namely for 0 < s" < ifx, C, is a function only 
of rdenoted as Cl,i but that for 3 > gi7 C, = C,,Jq) + Cl,a(s", q ) ,  where Cl,a(Bg,q) z 0. 
For most problems of practical interest such a description of C, would appear to 
be valid. 

Now let f (s",r) -fo(r)+nfz(s",r)+..*, (2.26) 

so that f 2  will be obtained from (2.5) as 

In  accordance with the treatment of C, let 

for 0 < B < Si and 
f i ( s " '  r )  = f 2 , i W >  

f Z ( %  r )  = fz,i(r) + f z ,  d(s", r ) ,  

(2.27) 

(2.28) 

(2.29) 



440 

for s" > gi; then from (2.27) 
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f [ i + f o f ; i + f : f 2 , i  = -(cl,if:)', (2.30) 
while 

(SZ, d)?p)?/ +fO(f2 ,  a&, +f& d - W A ( f 2 ,  ds", -SIX,, d k l  = - CC,, d f3,. (2.31) 

Clearly the solution for f 2 , i  applies for all B in the special case of C, depending 
only on 7. The boundary conditions for both parts of f 2  are homogeneous and the 
initial conditions onf2, at s" = di are f2, d(Bi, 7) = 0. 

With C,,$ specified as a function of 7, (2.30) can be integrated numerically 
from 7 = 0. Only two computer runs are necessary, one with the right-hand side 
equal to zero and with f2J0)  = f i  i(0) = 0, f l i ( 0 )  = 1, and the second with the 
same conditions at 7 = 0 but with the right-hand side present. Because of the 
behaviour of the left-hand side of (2.30) as 7 -+ 00, any arbitrary multiple of the 
first solution plus the second can be found so that f;, ,.(a) = 0. 

A special case of this solution prevails if both (2.25) and the Crocco relation 
g = gw, 0 + (1 - gw. o)f ,  apply- Then 

C1,i = ~ ~ ~ ~ 9 ~ , , o + ~ ~ - 9 ~ , o ~ f A - f i f A 2 1 ~ ~ - ~ ~ - 1 ~ .  (2.32) 

The right-hand side of (2.30) in this case has as parameters g,, and f i ;  it is thus 
convenient to generate three independent, complementary solutions which 
permit the solution €or an arbitrary right-hand side to be determined by quad- 
rature, following the method of variation of parameters. Identify these three 
solutions as fJk), where 

(2.33) 1 f . p ( O )  = 1, f p ' ( 0 )  =fp(a) = 0, 
f'p(0) = 0, f 'p'(0)  = 1, f,'""(0O) = 1, 

fJ3' = f Alf:w. 
The solutions fill and ,fJ2) have been found numerically and are shown in figure 2 .  t 
In the numerical analysis for the determination of fJk), k = 1,2, there is sought 
the value of fJk)"(0), which yields the proper asymptotic behaviour for f J k ) .  Note 
that (2.8) is the asymptotic solution for (2.30) with a zero right-hand side 
provided A, is set equal to zero and N ;  replaced by f J k ) ' ;  thus, fdl)"(0) and fJ2)"(0) 
are selected so that "4,) = 0 and aJ2)  = 1, respectively. Clearly, the values of 
fAk)"(O) can be obtained by combining linearly two numerical solutions. 

The solution for f 2 , d ( 9 , 7 )  is identical to that for (2.16), i.e. it  is given by (2.23) 
with Hi = - (el, f:),. Thus a first-order effect on the velocity field due to altera- 
tion of the product of density and viscosity can be readily obtained by application 
of the eigenfunctions presented here and by numerical quadrature. 

As a third perturbation consider a flow involving mass transfer at  the wall of 
such strength and distribution that the boundary layer is only slightly altered 
from that given by the Blasius solution. Now, in general, 

pvrf = - ( d q d x )  ((zs")&f),- + (zs")& (av/ax)f,, (2.34) 

or (pu)w/Peue = - ~ e ~ j ( ( 2 ~ ) ' f w ) i .  (2.35) 

t These solutions are tabulated in PIBAL Report No. 752, dated August 1962. 



Perturbation solutions in boundary-layer theory. Part 1 411 

Several types of perturbations could now be considered in terms of (2.34); e.g. if 
the mass transfer is distributed so that fw = const., then the perturbed flow will 
be similar, i.e. will be described by an ordinary differential equation in 7. A second 
type of perturbation will be considered herein; namely, let the mass transfer in 
the region of injection be uniform, i.e. (pv), = const. and let the radius, if finite, 

5.0 

45 

4.0 

3.5 

3.0 
7 

2.5 

2.0 

1-5 

1.0 

0.5 i /  
0.5 1.0 1 

0 
0 

f; 
5 2.0 

FIGURE 2. Perturbation velocity profiles: variable mass-density-viscosity ratio. 

be a linear function of x, i.e. r = Bx or r - &. It is convenient to introduce the 
parameter 

f‘l’” 2W = 0.7235; f y r  = 0.7044. 

(2.36) 
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In  (2.38) it has been assumed that injection starts at S = Si; thus, mass transfer 
is considered to be initiated downstream of the leading edge. However, note that 
no difficulty arises if Bi = 0. The perturbation of the flow will be related to the 
value of fw; thus, for the analysis to be valid, Ifw\ < 1. As may be seen from (2.38) 
this inequality can be satisfied by appropriate combinations of rate and extent 
of mass transfer, i.e. of (pv), and 5.  

If a perturbation parameter E ,  = (pv),/(p,u,) is introduced, and if 

f ( 3 > 7 )  - t o ( ? )  +%33(S,7), (2.39) 

then linearization and separation of variables lead as before to S, N @3 and to 

N l  +fo A$ -A, f ; ,  Nj +f;( 1 + A,) N3 = 0. (2.40) 

The boundary conditions for (2.40) can be conveniently taken to be 

N3(0) = 1, NA(0) = NA(0O) = 0. (2.41) 

From (2.38) it is clear that the boundary conditions onf,(B, 7) can be satisfied if 
solutions to (2.40) are available with A, = 1 for two-dimensional flows ( j  = 0) 
and with A, = Q or - 1 for axisymmetric flows ( j  = 1). The solutions for A, = 1, 
Q have been obtained numerically and are given in figure 3.T The solution for 
A, = - 1 is exactly N ,  = 1. It is noted that the asymptotic solution of (2.40) is 
(2.8) with A, and N ;  replaced by -A, and N i ,  respectively. The requirement of 
either boundedness or exponential behaviour as 7 + 00, depending on the sign 
of A,, necessitates a2 = 0; thus, the numerical analysis requires N i ( 0 )  to be 
selected so that a2 = 0. 

It is noted that 

(2.42) 

where the coefficients A,, k can be determined by comparing (2.42) with (2.38). 
It should also be noted thatf,(Si, 7) + f o ,  if Si += 0; it is therefore necessary to add 
to this solution a perturbation solution of the type discussed above in order to 
make the initial profile correspond to the Blasius solution or to a prescribed 
deviation from it. 

Again for this perturbation higher-order approximations for the solution for 
f ( ~ ,  7) (cf. (2.39)) can be obtainedin the same manner as above. Thus, for example, 
denote the solution fort3 in (2.42) byf,, and the next order solution by f 3 ,  2. Then 
the equation forf,, is formally identical to (2.16) where Hi depends onf& ,; the 
solution fo r f ,  is (2.23). 

3. Applications 
In  this section are presented several typical applications of the perturbation 

solutions obtained in the previous section; these have been selected, in general, 
so that comparison with other, more accurate analyses is possible. 

Howe (1959) and Pallone (1961) have considered the flow over a two- 
dimensional, permeable wall followed at x = L by an impermeable surface. The 
mass transfer on the porous surface is distributed so that the boundary layer 
thereon is similar and described, for example, by the analysis of Low (1955). The 

t The solutions are tabulated in PIBAL Report no. 752, dated August 1962. 
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boundary-layer properties on the impermeable surface are difficult to obtain ac- 
cur&ly from a simple integral method; this is demonstrated by Howe (1959) who 
gives a comparison between exact numerical calculations and the results of several 
analyses based on the integral method. Of interest herein will be the variation 
of skin friction on the impermeable surface normalized with respect to that which 

*: 
FIGURE 3. Perturbation velocity profiles: suction-injection problem. 

f”(0) = 1.2274 for A, = l . O ; f ” ( O )  = 0.90387 for A, = +. 

would prevail at  the same station x > L if no upstream mass transfer exists. This 
problem may be treated as an initial value problem as follows: The coefficients 
A ,  in (2.9) may be selected so that the similar solution applicable on the surface 
x < L is matched, and the resulting solution employed to find the distribution of 
cf/cf, with x/L.  Note that cf = 24(2j+ l)*f”(O) (peucx/pg)-& provided pp  = pepe 

for bo th j  = 0 a n d j  = 1 where only the first-order perturbation is indicated. 
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In  figure 4 the velocity profile obtained by this procedure with ten Al ,k  
coefficients computed from (2.14) is compared with the actual initial profile for 
f, = -0.5.  In  figure 5 the distribution of c,/cf,, with xlL given by (3.1) is com- 

4% 
FIGURE 4. Comparison of initial profile. -0-, Fitted profile. 

XIL 
FIGURE 5. Distribution of skin friction. ---, Pallone; -, addendum; 

, PIBAL 7 5 2 ;  0, withf,(By). 

pared with that given by Rubesin & Inouye (1957) and Pallone (1961). Reasonable 
agreement is noted. This agreement is improved (cf. figure 5) by consideration of 
the second-order perturbation which has been computed by application of (2.24) 
to two vaIues of xlL, namely xlL = 1.4 and 3.0. 
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The results of the analysis for variable pp can be compared to the exact calcu- 
lations which are due to van Driest (1952) and which were carried out for constant 
coefficients of specific heat, for the Sutherland viscosity-temperature relation 
and for a constant wall temperature. In this case only the f2,Jr) solution is 
necessary and 

g, 0 = (1 - f i l  (Tw/Tm), 

r7i = [ I+  (2 /y -  1) M ~ ~ 1 - 1 .  

Nu, 

FIGURE 6. Distribution of shear function. TWITm 21 1.00; n = - 0.30. 

For comparison it is convenient to consider the shear parameter g" and the 
parameter C,R& of van Driest; it is easy to show that 

g" = c 4 2  f I ! ,  

and that CfRkx = 2 J2C(O) f "(0). 

The accuracy of the velocity profiles given by the perturbation solution can easily 
be shown in terms of g* as a function off I .  In figure 6 this comparison is shown 
for M, = 4 and for TWITm = 1. A value of n = - 0.3 has been assumed. Satis- 
factory agreement is seen. 

The comparison for skin friction for a range of wall temperature ratios and 
free stream Mach numbers is shown in table 2. Again satisfactory agreement is 
noted. 
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The perturbations due to mass transfer have been compared to the finite 
difference calculation due to Smith & Clutter (1961) for the two-dimensional, 
incompressible flow over a flat plate with uniform suction. For this case (2.42) 
leads to 

Present 
T m P m  M m  report Van Driest 

1.04 4.0 1.234 1.27 
4.17 4.0 1.092 1.14 
1.00 8.0 1.171 1.15 
2.00 8.0 1.164 1.11 

TABLE 2. Comparison of  skin friction-C,R&. 

xixo 
FIGURE 7. Distribution of shear parameter: uniform suction. - (ww/ue) (u,xo/ve)* = 1; 
xo = 1. - , First order; 0, second order with five eigenfunctions; -m-, second order 
with ten eigenfunctions; - - , Smith & Clutter. 

The wall shear parameter obtained from (3.2) is compared to the results of Smith 
& Clutter in figure 7 .  The next order term, i.e. e$ f 3 , 2 ,  is obtained from an equation 
of the form (2.16) with 

(3.3) 
It is interesting to note that (3.2) and (3.3) imply that for this case a convenient 
expansion would have typical term [(s3/pe) (8/2)4]"N3, "(7). The results for five 
and ten eigenvalues in the representation of the Green's function are shown in 
figure 7 .  The significant improvement in accuracy by the addition of the f 3 , 2  
function may be noted. 

Hi = (s/2,4) (N21- 2%,1 N3,l). 
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4. Concluding remarks 
Plows which are described by perturbations about the Blasius solution have 

been considered. These perturbations are related to three problems: (1) initial 
velocity profiles deviating from the Blasius solution, (2) flows with a variable 
product of mass-density and viscosity, and (3) flows with mass transfer at the 
wall. Solution of the first problem leads to a set of eigenfunctions which permit 
higher-order approximations to each problem to be obtained in a systematic 
manner by means of quadrature. 

Several comparisons of the results of the analysis with more accurate calcula- 
tions have been carried out; good agreement has been obtained. 
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Appendix 

Al, k. For completeness (2.7) is repeated; under consideration is the equation 
Considered herein are the procedures used for the selection of the eigenvalues 

NZk +fON,”,k + A ,  k f X ,  k + (1 - Al, ,)f6’Nl, k = 0, (A11 

subject to the conditions Nl, k(0)  = Ni ,  k(0) = Ni ,  ,(a) = 0. The most accurate 
and sensitive method for the selection of those values of Al, yielding exponential 
decay as 7 + co appears to be the following: consider values of 7 sufficiently large 
so that fo, fh, andf: take on their asymptotic values; then (A 1) becomes 

N ~ , + ( 7 - K ) N ; , k + h l , k N ; , ,  N 0. (A2) 

Let N ; , ,  = e-*q2Ze,(;Y?), where +j = 7 --K so that (A2) becomes 

This is Weber’s equation [see, for example, Whittaker & Watson (1958)J From 
the theory of this equation it is known to have an oscillating solution for 7 < 2Ai, 
and to have an exponential behaviour for 7 > 2&. In  particular, in the former 
region the solution corresponding to a particular eigenfunction will have one 
zero fewer than the next higher eigenfunction. It is to be noted that one solution 
to (A3) is proportional to e)q2; it is this solution which leads to the power law 
behaviour of N;, This suggests the following procedure for the selection of the 
eigenvalues: With a particular Al, assumed the integration from q = 0 is carried 
out to 7 = 7*, a value of roughly 5. With the values of N; ,k  and N,”,, at 7 = 7” 
initial conditions for the integration of (A 3) may be computed and the numerical 
integration then carried out in terms of Zk. All solutions will diverge for some 
7 > 2 ~ t ,  k ;  however, for some A ~ ,  k’s, Z, -+ co as i j  + co, while for others zk -+ - co 
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as + a. It will be recognized that the introduction of the exponential in the 
reduction of (A2) to the second order (A3) effectively exposes the power-law 
contribution to N i , k  and thus permits accurate evaluation of those values of 
Al, yielding only exponential behaviour. Unfortunately there are no simple 
solutions to (A3) so that the procedure above is somewhat cumbersome. 

An alternative approach is as follows: If (2.11) is written with the asymptotic 
approximations for fo, f 6 and f ,  considered, there results 

H;, ,+ ( r -K)H; , I ,+h l , I ,Hl ,k  = 0. (A 4) 

The approximate solution of (A 4) valid for I 1 - Al, 
in boundary-layer theory (cf. Cohen & Reshotko 1956) and is 

(7 - K) - ,  < 1 is well known 

Ill, 21 a,(? - ~ ) - ( l - ~ ~ k ) e x p  [ - (7 - ~ ) ~ / 2 ]  + a,(y - ~ ) - h k ,  (A 5 )  

where a1 and a, are integration constants. Now N ;  can be obtained from (A 5 )  as 

N ;  N al(y - K)-(l--hl)exp [ - $(y - K),]  + a2(7 - ~ ) - ~ l +  a,exp [ - i ( 7  - K ) ~ ] .  (A6) 

Consider now that a numerical solution of ( A l )  has been carried out for a 
particular value of to 7 = 7*, large in the sense discussed above. Then 
a,, a2 and a3 in (A 6) can be selected so that the asymptotic solution valid for 
7 > 7" is continuous with the numerical solution. In  particular, the arbitrary 
constant a2 can be expressed as 

a, 21 { N ;  + (7 - K )  N;[  1 + (1 - A,) (7 - K)-2]}9=7*,  (A71 

where the same approximation is made here as employed in (A5). By deter- 
mining the behaviour of a, versus Al, the values of the latter resulting in a, = 0 
can be determined. 

This second procedure was used in determining the first five eigenvalues 
presented here; it  fails, however, for the higher eigenfunctions because, with the 
increasing 7" necessary for (A 6) to apply, (A 7 )  involves small differences and a, 
cannot be determined therefrom. The second five eigenfunctions were found in 
an approximate manner as follows: Stewartson (1957) analysed (A 1) for large 
values of A,, (A,, B 1) and arrived at the following approximate expression 
for the eigenvalues: 

where s is an integer identifying the eigenvalue. The 'exact' values of Al, 
k = 1, . . . . 5 ,  found here are found to be correlated by the equation 

Al,s N 2 ~ + 0 . 2 7 ( 2 ~ ) * +  1.87, 

Al, k 0*891{2(k- 1) + 0*27[2(k- 1)]* + 1*87}, (A 8) 

which is in good agreement with Stewartson's expression. Now (AS) was em- 
ployed to obtain the eigenvalues for k > 5 .  The resulting eigenfunctions have the 
proper oscillatory behaviour for 7 < 2&. In  addition, for values of 
different from those given by (A 8) by 
are not significantly altered except for 7 2 2 A t  k .  Accordingly, these approxi- 
mate eigenfunctions are believed to be sufficiently accurate for most purposes. 

The numerical integrations involved in the perturbation solutions were carried 
out on an IBM650 Data Processing System using a standard Kutta-Runge 

0.1 the eigenfunctions in terms of N;, 
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program with self-selecting step-sizes. Computing time was approximately 
15 min per run. The Blasius function which was input was obtained by integra- 
tion for 0 < 7 < 6 and from its asymptotic representation for 7 2 6. After final 
determination of the eigenvalues, the eigenfunctions and various functions 
related to them were tabulated for equal increments of 7 on a Bendix G-15 
computer. 
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